direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×C42.29C22, C8⋊C4⋊11C10, C4⋊1D4.5C10, (C2×C20).341D4, C42.C2⋊3C10, D4⋊C4⋊19C10, C42.27(C2×C10), C20.272(C4○D4), (C4×C20).269C22, (C2×C40).336C22, (C2×C20).946C23, C22.111(D4×C10), C10.146(C8⋊C22), C10.75(C4.4D4), (D4×C10).201C22, (C5×C8⋊C4)⋊25C2, C4.17(C5×C4○D4), (C2×C4).42(C5×D4), C4⋊C4.21(C2×C10), (C2×C8).57(C2×C10), C2.21(C5×C8⋊C22), (C5×D4⋊C4)⋊42C2, (C2×D4).24(C2×C10), (C2×C10).667(C2×D4), (C5×C4⋊1D4).12C2, (C5×C42.C2)⋊20C2, C2.13(C5×C4.4D4), (C5×C4⋊C4).241C22, (C2×C4).121(C22×C10), SmallGroup(320,991)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C42.29C22
G = < a,b,c,d,e | a5=b4=c4=d2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1, ebe-1=bc2, dcd=c-1, ce=ec, ede-1=b2c-1d >
Subgroups: 242 in 110 conjugacy classes, 50 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, C23, C10, C10, C10, C42, C4⋊C4, C4⋊C4, C2×C8, C2×D4, C2×D4, C20, C20, C2×C10, C2×C10, C8⋊C4, D4⋊C4, C42.C2, C4⋊1D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C42.29C22, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×C40, D4×C10, D4×C10, C5×C8⋊C4, C5×D4⋊C4, C5×C42.C2, C5×C4⋊1D4, C5×C42.29C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C4.4D4, C8⋊C22, C5×D4, C22×C10, C42.29C22, D4×C10, C5×C4○D4, C5×C4.4D4, C5×C8⋊C22, C5×C42.29C22
(1 37 109 29 101)(2 38 110 30 102)(3 39 111 31 103)(4 40 112 32 104)(5 33 105 25 97)(6 34 106 26 98)(7 35 107 27 99)(8 36 108 28 100)(9 44 116 22 93)(10 45 117 23 94)(11 46 118 24 95)(12 47 119 17 96)(13 48 120 18 89)(14 41 113 19 90)(15 42 114 20 91)(16 43 115 21 92)(49 121 137 57 129)(50 122 138 58 130)(51 123 139 59 131)(52 124 140 60 132)(53 125 141 61 133)(54 126 142 62 134)(55 127 143 63 135)(56 128 144 64 136)(65 84 153 73 145)(66 85 154 74 146)(67 86 155 75 147)(68 87 156 76 148)(69 88 157 77 149)(70 81 158 78 150)(71 82 159 79 151)(72 83 160 80 152)
(1 68 125 116)(2 65 126 113)(3 70 127 118)(4 67 128 115)(5 72 121 120)(6 69 122 117)(7 66 123 114)(8 71 124 119)(9 29 76 133)(10 26 77 130)(11 31 78 135)(12 28 79 132)(13 25 80 129)(14 30 73 134)(15 27 74 131)(16 32 75 136)(17 36 82 140)(18 33 83 137)(19 38 84 142)(20 35 85 139)(21 40 86 144)(22 37 87 141)(23 34 88 138)(24 39 81 143)(41 102 145 54)(42 99 146 51)(43 104 147 56)(44 101 148 53)(45 98 149 50)(46 103 150 55)(47 100 151 52)(48 97 152 49)(57 89 105 160)(58 94 106 157)(59 91 107 154)(60 96 108 159)(61 93 109 156)(62 90 110 153)(63 95 111 158)(64 92 112 155)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)(121 123 125 127)(122 124 126 128)(129 131 133 135)(130 132 134 136)(137 139 141 143)(138 140 142 144)(145 147 149 151)(146 148 150 152)(153 155 157 159)(154 156 158 160)
(1 116)(2 71)(3 114)(4 69)(5 120)(6 67)(7 118)(8 65)(9 29)(10 136)(11 27)(12 134)(13 25)(14 132)(15 31)(16 130)(17 142)(18 33)(19 140)(20 39)(21 138)(22 37)(23 144)(24 35)(26 75)(28 73)(30 79)(32 77)(34 86)(36 84)(38 82)(40 88)(41 52)(42 103)(43 50)(44 101)(45 56)(46 99)(47 54)(48 97)(49 152)(51 150)(53 148)(55 146)(57 160)(58 92)(59 158)(60 90)(61 156)(62 96)(63 154)(64 94)(66 127)(68 125)(70 123)(72 121)(74 135)(76 133)(78 131)(80 129)(81 139)(83 137)(85 143)(87 141)(89 105)(91 111)(93 109)(95 107)(98 147)(100 145)(102 151)(104 149)(106 155)(108 153)(110 159)(112 157)(113 124)(115 122)(117 128)(119 126)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,37,109,29,101)(2,38,110,30,102)(3,39,111,31,103)(4,40,112,32,104)(5,33,105,25,97)(6,34,106,26,98)(7,35,107,27,99)(8,36,108,28,100)(9,44,116,22,93)(10,45,117,23,94)(11,46,118,24,95)(12,47,119,17,96)(13,48,120,18,89)(14,41,113,19,90)(15,42,114,20,91)(16,43,115,21,92)(49,121,137,57,129)(50,122,138,58,130)(51,123,139,59,131)(52,124,140,60,132)(53,125,141,61,133)(54,126,142,62,134)(55,127,143,63,135)(56,128,144,64,136)(65,84,153,73,145)(66,85,154,74,146)(67,86,155,75,147)(68,87,156,76,148)(69,88,157,77,149)(70,81,158,78,150)(71,82,159,79,151)(72,83,160,80,152), (1,68,125,116)(2,65,126,113)(3,70,127,118)(4,67,128,115)(5,72,121,120)(6,69,122,117)(7,66,123,114)(8,71,124,119)(9,29,76,133)(10,26,77,130)(11,31,78,135)(12,28,79,132)(13,25,80,129)(14,30,73,134)(15,27,74,131)(16,32,75,136)(17,36,82,140)(18,33,83,137)(19,38,84,142)(20,35,85,139)(21,40,86,144)(22,37,87,141)(23,34,88,138)(24,39,81,143)(41,102,145,54)(42,99,146,51)(43,104,147,56)(44,101,148,53)(45,98,149,50)(46,103,150,55)(47,100,151,52)(48,97,152,49)(57,89,105,160)(58,94,106,157)(59,91,107,154)(60,96,108,159)(61,93,109,156)(62,90,110,153)(63,95,111,158)(64,92,112,155), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,116)(2,71)(3,114)(4,69)(5,120)(6,67)(7,118)(8,65)(9,29)(10,136)(11,27)(12,134)(13,25)(14,132)(15,31)(16,130)(17,142)(18,33)(19,140)(20,39)(21,138)(22,37)(23,144)(24,35)(26,75)(28,73)(30,79)(32,77)(34,86)(36,84)(38,82)(40,88)(41,52)(42,103)(43,50)(44,101)(45,56)(46,99)(47,54)(48,97)(49,152)(51,150)(53,148)(55,146)(57,160)(58,92)(59,158)(60,90)(61,156)(62,96)(63,154)(64,94)(66,127)(68,125)(70,123)(72,121)(74,135)(76,133)(78,131)(80,129)(81,139)(83,137)(85,143)(87,141)(89,105)(91,111)(93,109)(95,107)(98,147)(100,145)(102,151)(104,149)(106,155)(108,153)(110,159)(112,157)(113,124)(115,122)(117,128)(119,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,37,109,29,101)(2,38,110,30,102)(3,39,111,31,103)(4,40,112,32,104)(5,33,105,25,97)(6,34,106,26,98)(7,35,107,27,99)(8,36,108,28,100)(9,44,116,22,93)(10,45,117,23,94)(11,46,118,24,95)(12,47,119,17,96)(13,48,120,18,89)(14,41,113,19,90)(15,42,114,20,91)(16,43,115,21,92)(49,121,137,57,129)(50,122,138,58,130)(51,123,139,59,131)(52,124,140,60,132)(53,125,141,61,133)(54,126,142,62,134)(55,127,143,63,135)(56,128,144,64,136)(65,84,153,73,145)(66,85,154,74,146)(67,86,155,75,147)(68,87,156,76,148)(69,88,157,77,149)(70,81,158,78,150)(71,82,159,79,151)(72,83,160,80,152), (1,68,125,116)(2,65,126,113)(3,70,127,118)(4,67,128,115)(5,72,121,120)(6,69,122,117)(7,66,123,114)(8,71,124,119)(9,29,76,133)(10,26,77,130)(11,31,78,135)(12,28,79,132)(13,25,80,129)(14,30,73,134)(15,27,74,131)(16,32,75,136)(17,36,82,140)(18,33,83,137)(19,38,84,142)(20,35,85,139)(21,40,86,144)(22,37,87,141)(23,34,88,138)(24,39,81,143)(41,102,145,54)(42,99,146,51)(43,104,147,56)(44,101,148,53)(45,98,149,50)(46,103,150,55)(47,100,151,52)(48,97,152,49)(57,89,105,160)(58,94,106,157)(59,91,107,154)(60,96,108,159)(61,93,109,156)(62,90,110,153)(63,95,111,158)(64,92,112,155), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,116)(2,71)(3,114)(4,69)(5,120)(6,67)(7,118)(8,65)(9,29)(10,136)(11,27)(12,134)(13,25)(14,132)(15,31)(16,130)(17,142)(18,33)(19,140)(20,39)(21,138)(22,37)(23,144)(24,35)(26,75)(28,73)(30,79)(32,77)(34,86)(36,84)(38,82)(40,88)(41,52)(42,103)(43,50)(44,101)(45,56)(46,99)(47,54)(48,97)(49,152)(51,150)(53,148)(55,146)(57,160)(58,92)(59,158)(60,90)(61,156)(62,96)(63,154)(64,94)(66,127)(68,125)(70,123)(72,121)(74,135)(76,133)(78,131)(80,129)(81,139)(83,137)(85,143)(87,141)(89,105)(91,111)(93,109)(95,107)(98,147)(100,145)(102,151)(104,149)(106,155)(108,153)(110,159)(112,157)(113,124)(115,122)(117,128)(119,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,37,109,29,101),(2,38,110,30,102),(3,39,111,31,103),(4,40,112,32,104),(5,33,105,25,97),(6,34,106,26,98),(7,35,107,27,99),(8,36,108,28,100),(9,44,116,22,93),(10,45,117,23,94),(11,46,118,24,95),(12,47,119,17,96),(13,48,120,18,89),(14,41,113,19,90),(15,42,114,20,91),(16,43,115,21,92),(49,121,137,57,129),(50,122,138,58,130),(51,123,139,59,131),(52,124,140,60,132),(53,125,141,61,133),(54,126,142,62,134),(55,127,143,63,135),(56,128,144,64,136),(65,84,153,73,145),(66,85,154,74,146),(67,86,155,75,147),(68,87,156,76,148),(69,88,157,77,149),(70,81,158,78,150),(71,82,159,79,151),(72,83,160,80,152)], [(1,68,125,116),(2,65,126,113),(3,70,127,118),(4,67,128,115),(5,72,121,120),(6,69,122,117),(7,66,123,114),(8,71,124,119),(9,29,76,133),(10,26,77,130),(11,31,78,135),(12,28,79,132),(13,25,80,129),(14,30,73,134),(15,27,74,131),(16,32,75,136),(17,36,82,140),(18,33,83,137),(19,38,84,142),(20,35,85,139),(21,40,86,144),(22,37,87,141),(23,34,88,138),(24,39,81,143),(41,102,145,54),(42,99,146,51),(43,104,147,56),(44,101,148,53),(45,98,149,50),(46,103,150,55),(47,100,151,52),(48,97,152,49),(57,89,105,160),(58,94,106,157),(59,91,107,154),(60,96,108,159),(61,93,109,156),(62,90,110,153),(63,95,111,158),(64,92,112,155)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120),(121,123,125,127),(122,124,126,128),(129,131,133,135),(130,132,134,136),(137,139,141,143),(138,140,142,144),(145,147,149,151),(146,148,150,152),(153,155,157,159),(154,156,158,160)], [(1,116),(2,71),(3,114),(4,69),(5,120),(6,67),(7,118),(8,65),(9,29),(10,136),(11,27),(12,134),(13,25),(14,132),(15,31),(16,130),(17,142),(18,33),(19,140),(20,39),(21,138),(22,37),(23,144),(24,35),(26,75),(28,73),(30,79),(32,77),(34,86),(36,84),(38,82),(40,88),(41,52),(42,103),(43,50),(44,101),(45,56),(46,99),(47,54),(48,97),(49,152),(51,150),(53,148),(55,146),(57,160),(58,92),(59,158),(60,90),(61,156),(62,96),(63,154),(64,94),(66,127),(68,125),(70,123),(72,121),(74,135),(76,133),(78,131),(80,129),(81,139),(83,137),(85,143),(87,141),(89,105),(91,111),(93,109),(95,107),(98,147),(100,145),(102,151),(104,149),(106,155),(108,153),(110,159),(112,157),(113,124),(115,122),(117,128),(119,126)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10T | 20A | ··· | 20H | 20I | ··· | 20P | 20Q | ··· | 20X | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 4 | 4 | 8 | 8 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 8 | ··· | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | D4 | C4○D4 | C5×D4 | C5×C4○D4 | C8⋊C22 | C5×C8⋊C22 |
kernel | C5×C42.29C22 | C5×C8⋊C4 | C5×D4⋊C4 | C5×C42.C2 | C5×C4⋊1D4 | C42.29C22 | C8⋊C4 | D4⋊C4 | C42.C2 | C4⋊1D4 | C2×C20 | C20 | C2×C4 | C4 | C10 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 4 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 2 | 8 |
Matrix representation of C5×C42.29C22 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
18 | 23 | 0 | 0 | 0 | 0 |
34 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 0 | 20 | 21 |
0 | 0 | 0 | 29 | 20 | 20 |
0 | 0 | 20 | 20 | 12 | 0 |
0 | 0 | 21 | 20 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
18 | 23 | 0 | 0 | 0 | 0 |
2 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 0 | 20 | 21 |
0 | 0 | 0 | 12 | 21 | 21 |
0 | 0 | 20 | 21 | 0 | 29 |
0 | 0 | 21 | 21 | 29 | 0 |
2 | 39 | 0 | 0 | 0 | 0 |
22 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 20 | 0 | 12 |
0 | 0 | 21 | 21 | 29 | 0 |
0 | 0 | 29 | 0 | 20 | 21 |
0 | 0 | 0 | 29 | 20 | 20 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[18,34,0,0,0,0,23,23,0,0,0,0,0,0,29,0,20,21,0,0,0,29,20,20,0,0,20,20,12,0,0,0,21,20,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[18,2,0,0,0,0,23,23,0,0,0,0,0,0,29,0,20,21,0,0,0,12,21,21,0,0,20,21,0,29,0,0,21,21,29,0],[2,22,0,0,0,0,39,39,0,0,0,0,0,0,21,21,29,0,0,0,20,21,0,29,0,0,0,29,20,20,0,0,12,0,21,20] >;
C5×C42.29C22 in GAP, Magma, Sage, TeX
C_5\times C_4^2._{29}C_2^2
% in TeX
G:=Group("C5xC4^2.29C2^2");
// GroupNames label
G:=SmallGroup(320,991);
// by ID
G=gap.SmallGroup(320,991);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1688,1766,1731,226,7004,172,10085,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=c^4=d^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1,e*b*e^-1=b*c^2,d*c*d=c^-1,c*e=e*c,e*d*e^-1=b^2*c^-1*d>;
// generators/relations